go-rpio/rpio.go
2021-12-01 22:14:59 +00:00

875 lines
22 KiB
Go

/*
Package rpio provides GPIO access on the Raspberry PI without any need
for external c libraries (eg. WiringPi or BCM2835).
Supports simple operations such as:
- Pin mode/direction (input/output/clock/pwm,alt0,alt1,alt2,alt3,alt4,alt5)
- Pin write (high/low)
- Pin read (high/low)
- Pin edge detection (no/rise/fall/any)
- Pull up/down/off
Also clock/pwm related oparations:
- Set Clock frequency
- Set Duty cycle
And SPI oparations:
- SPI transmit/recieve/exchange bytes
- Set speed
- Chip select
Example of use:
rpio.Open()
defer rpio.Close()
pin := rpio.Pin(4)
pin.Output()
for {
pin.Toggle()
time.Sleep(time.Second)
}
The library use the raw BCM2835 pinouts, not the ports as they are mapped
on the output pins for the raspberry pi, and not the wiringPi convention.
Rev 2 and 3 Raspberry Pi Rev 1 Raspberry Pi (legacy)
+-----+---------+----------+---------+-----+ +-----+--------+----------+--------+-----+
| BCM | Name | Physical | Name | BCM | | BCM | Name | Physical | Name | BCM |
+-----+---------+----++----+---------+-----+ +-----+--------+----++----+--------+-----+
| | 3.3v | 1 || 2 | 5v | | | | 3.3v | 1 || 2 | 5v | |
| 2 | SDA 1 | 3 || 4 | 5v | | | 0 | SDA | 3 || 4 | 5v | |
| 3 | SCL 1 | 5 || 6 | 0v | | | 1 | SCL | 5 || 6 | 0v | |
| 4 | GPIO 7 | 7 || 8 | TxD | 14 | | 4 | GPIO 7 | 7 || 8 | TxD | 14 |
| | 0v | 9 || 10 | RxD | 15 | | | 0v | 9 || 10 | RxD | 15 |
| 17 | GPIO 0 | 11 || 12 | GPIO 1 | 18 | | 17 | GPIO 0 | 11 || 12 | GPIO 1 | 18 |
| 27 | GPIO 2 | 13 || 14 | 0v | | | 21 | GPIO 2 | 13 || 14 | 0v | |
| 22 | GPIO 3 | 15 || 16 | GPIO 4 | 23 | | 22 | GPIO 3 | 15 || 16 | GPIO 4 | 23 |
| | 3.3v | 17 || 18 | GPIO 5 | 24 | | | 3.3v | 17 || 18 | GPIO 5 | 24 |
| 10 | MOSI | 19 || 20 | 0v | | | 10 | MOSI | 19 || 20 | 0v | |
| 9 | MISO | 21 || 22 | GPIO 6 | 25 | | 9 | MISO | 21 || 22 | GPIO 6 | 25 |
| 11 | SCLK | 23 || 24 | CE0 | 8 | | 11 | SCLK | 23 || 24 | CE0 | 8 |
| | 0v | 25 || 26 | CE1 | 7 | | | 0v | 25 || 26 | CE1 | 7 |
| 0 | SDA 0 | 27 || 28 | SCL 0 | 1 | +-----+--------+----++----+--------+-----+
| 5 | GPIO 21 | 29 || 30 | 0v | |
| 6 | GPIO 22 | 31 || 32 | GPIO 26 | 12 |
| 13 | GPIO 23 | 33 || 34 | 0v | |
| 19 | GPIO 24 | 35 || 36 | GPIO 27 | 16 |
| 26 | GPIO 25 | 37 || 38 | GPIO 28 | 20 |
| | 0v | 39 || 40 | GPIO 29 | 21 |
+-----+---------+----++----+---------+-----+
See the spec for full details of the BCM2835 controller:
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
and https://elinux.org/BCM2835_datasheet_errata - for errors in that spec
Changes to support the BCM2711, used on the Raspberry Pi 4, were cribbed from https://github.com/RPi-Distro/raspi-gpio/
*/
package rpio
import (
"bytes"
"encoding/binary"
"errors"
"os"
"reflect"
"sync"
"syscall"
"time"
"unsafe"
)
type Mode uint8
type Pin uint8
type State uint8
type Pull uint8
type Edge uint8
// Memory offsets for gpio, see the spec for more details
const (
bcm2835Base = 0x20000000
gpioOffset = 0x200000
clkOffset = 0x101000
pwmOffset = 0x20C000
spiOffset = 0x204000
intrOffset = 0x00B000
memLength = 4096
)
// BCM 2711 has a different mechanism for pull-up/pull-down/enable
const (
GPPUPPDN0 = 57 // Pin pull-up/down for pins 15:0
GPPUPPDN1 = 58 // Pin pull-up/down for pins 31:16
GPPUPPDN2 = 59 // Pin pull-up/down for pins 47:32
GPPUPPDN3 = 60 // Pin pull-up/down for pins 57:48
)
var (
gpioBase int64
clkBase int64
pwmBase int64
spiBase int64
intrBase int64
irqsBackup uint64
)
func init() {
base := getBase()
gpioBase = base + gpioOffset
clkBase = base + clkOffset
pwmBase = base + pwmOffset
spiBase = base + spiOffset
intrBase = base + intrOffset
}
// Pin mode, a pin can be set in Input or Output, Clock or Pwm mode
const (
Input Mode = iota
Output
Clock
Pwm
Spi
Alt0
Alt1
Alt2
Alt3
Alt4
Alt5
)
// State of pin, High / Low
const (
Low State = iota
High
)
// Which PWM algorithm to use, Balanced or Mark/Space
const (
Balanced = true
MarkSpace = false
)
// Pull Up / Down / Off
const (
PullOff Pull = iota
PullDown
PullUp
PullNone
)
// Edge events
const (
NoEdge Edge = iota
RiseEdge
FallEdge
AnyEdge = RiseEdge | FallEdge
)
// Arrays for 8 / 32 bit access to memory and a semaphore for write locking
var (
memlock sync.Mutex
gpioMem []uint32
clkMem []uint32
pwmMem []uint32
spiMem []uint32
intrMem []uint32
gpioMem8 []uint8
clkMem8 []uint8
pwmMem8 []uint8
spiMem8 []uint8
intrMem8 []uint8
)
// Input: Set pin as Input
func (pin Pin) Input() {
PinMode(pin, Input)
}
// Output: Set pin as Output
func (pin Pin) Output() {
PinMode(pin, Output)
}
// Clock: Set pin as Clock
func (pin Pin) Clock() {
PinMode(pin, Clock)
}
// Pwm: Set pin as Pwm
func (pin Pin) Pwm() {
PinMode(pin, Pwm)
}
// High: Set pin High
func (pin Pin) High() {
WritePin(pin, High)
}
// Low: Set pin Low
func (pin Pin) Low() {
WritePin(pin, Low)
}
// Toggle pin state
func (pin Pin) Toggle() {
TogglePin(pin)
}
// Freq: Set frequency of Clock or Pwm pin (see doc of SetFreq)
func (pin Pin) Freq(freq int) {
SetFreq(pin, freq)
}
// DutyCycle: Set duty cycle for Pwm pin (see doc of SetDutyCycle)
func (pin Pin) DutyCycle(dutyLen, cycleLen uint32) {
SetDutyCycle(pin, dutyLen, cycleLen)
}
// DutyCycleWithPwmMode: Set duty cycle for Pwm pin while also specifying which PWM
// mode to use, Balanced or MarkSpace (see doc of SetDutyCycleWithPwmMode)
func (pin Pin) DutyCycleWithPwmMode(dutyLen, cycleLen uint32, mode bool) {
SetDutyCycleWithPwmMode(pin, dutyLen, cycleLen, mode)
}
// Mode: Set pin Mode
func (pin Pin) Mode(mode Mode) {
PinMode(pin, mode)
}
// Write: Set pin state (high/low)
func (pin Pin) Write(state State) {
WritePin(pin, state)
}
// Read pin state (high/low)
func (pin Pin) Read() State {
return ReadPin(pin)
}
// Pull: Set a given pull up/down mode
func (pin Pin) Pull(pull Pull) {
PullMode(pin, pull)
}
// PullUp: Pull up pin
func (pin Pin) PullUp() {
PullMode(pin, PullUp)
}
// PullDown: Pull down pin
func (pin Pin) PullDown() {
PullMode(pin, PullDown)
}
// PullOff: Disable pullup/down on pin
func (pin Pin) PullOff() {
PullMode(pin, PullOff)
}
func (pin Pin) ReadPull() Pull {
if !isBCM2711() {
return PullNone // Can't read pull-up/pull-down state on other Pi boards
}
reg := GPPUPPDN0 + (uint8(pin) >> 4)
bits := gpioMem[reg] >> ((uint8(pin) & 0xf) << 1) & 0x3
switch bits {
case 0:
return PullOff
case 1:
return PullUp
case 2:
return PullDown
default:
return PullNone // Invalid
}
}
// Detect: Enable edge event detection on pin
func (pin Pin) Detect(edge Edge) {
DetectEdge(pin, edge)
}
// EdgeDetected checks edge event on pin
func (pin Pin) EdgeDetected() bool {
return EdgeDetected(pin)
}
// PinMode sets the mode of a given pin (Input, Output, Clock, Pwm or Spi)
//
// Clock is possible only for pins 4, 5, 6, 20, 21.
// Pwm is possible only for pins 12, 13, 18, 19.
//
// Spi mode should not be set by this directly, use SpiBegin instead.
func PinMode(pin Pin, mode Mode) {
// Pin fsel register, 0 or 1 depending on bank
fselReg := uint8(pin) / 10
shift := (uint8(pin) % 10) * 3
f := uint32(0)
const in = 0 // 000
const out = 1 // 001
const alt0 = 4 // 100
const alt1 = 5 // 101
const alt2 = 6 // 110
const alt3 = 7 // 111
const alt4 = 3 // 011
const alt5 = 2 // 010
switch mode {
case Input:
f = in
case Output:
f = out
case Clock:
switch pin {
case 4, 5, 6, 32, 34, 42, 43, 44:
f = alt0
case 20, 21:
f = alt5
default:
return
}
case Pwm:
switch pin {
case 12, 13, 40, 41, 45:
f = alt0
case 18, 19:
f = alt5
default:
return
}
case Spi:
switch pin {
case 7, 8, 9, 10, 11: // SPI0
f = alt0
case 35, 36, 37, 38, 39: // SPI0
f = alt0
case 16, 17, 18, 19, 20, 21: // SPI1
f = alt4
case 40, 41, 42, 43, 44, 45: // SPI2
f = alt4
default:
return
}
case Alt0:
f = alt0
case Alt1:
f = alt1
case Alt2:
f = alt2
case Alt3:
f = alt3
case Alt4:
f = alt4
case Alt5:
f = alt5
}
memlock.Lock()
defer memlock.Unlock()
const pinMask = 7 // 111 - pinmode is 3 bits
gpioMem[fselReg] = (gpioMem[fselReg] &^ (pinMask << shift)) | (f << shift)
}
// WritePin sets a given pin High or Low
// by setting the clear or set registers respectively
func WritePin(pin Pin, state State) {
p := uint8(pin)
// Set register, 7 / 8 depending on bank
// Clear register, 10 / 11 depending on bank
setReg := p/32 + 7
clearReg := p/32 + 10
memlock.Lock()
if state == Low {
gpioMem[clearReg] = 1 << (p & 31)
} else {
gpioMem[setReg] = 1 << (p & 31)
}
memlock.Unlock() // not deferring saves ~600ns
}
// ReadPin reads the state of a pin
func ReadPin(pin Pin) State {
// Input level register offset (13 / 14 depending on bank)
levelReg := uint8(pin)/32 + 13
if (gpioMem[levelReg] & (1 << uint8(pin&31))) != 0 {
return High
}
return Low
}
// TogglePin: Toggle a pin state (high -> low -> high)
func TogglePin(pin Pin) {
p := uint8(pin)
setReg := p/32 + 7
clearReg := p/32 + 10
levelReg := p/32 + 13
bit := uint32(1 << (p & 31))
memlock.Lock()
if (gpioMem[levelReg] & bit) != 0 {
gpioMem[clearReg] = bit
} else {
gpioMem[setReg] = bit
}
memlock.Unlock()
}
// DetectEdge: Enable edge event detection on pin.
//
// Combine with pin.EdgeDetected() to check whether event occured.
//
// Note that using this function might conflict with the same functionality of other gpio library.
//
// It also clears previously detected event of this pin if there was any.
//
// Note that call with RiseEdge will disable previously set FallEdge detection and vice versa.
// You have to call with AnyEdge, to enable detection for both edges.
// To disable previously enabled detection call it with NoEdge.
//
// WARNING: this might make your Pi unresponsive, if this happens, you should either run the code as root,
// or add `dtoverlay=gpio-no-irq` to `/boot/config.txt` and restart your pi,
func DetectEdge(pin Pin, edge Edge) {
if edge != NoEdge {
// disable GPIO event interruption to prevent freezing in some cases
DisableIRQs(1<<49 | 1<<52) // gpio_int[0] and gpio_int[3]
}
p := uint8(pin)
// Rising edge detect enable register (19/20 depending on bank)
// Falling edge detect enable register (22/23 depending on bank)
// Event detect status register (16/17)
renReg := p/32 + 19
fenReg := p/32 + 22
edsReg := p/32 + 16
bit := uint32(1 << (p & 31))
if edge&RiseEdge > 0 { // set bit
gpioMem[renReg] |= bit
} else { // clear bit
gpioMem[renReg] &^= bit
}
if edge&FallEdge > 0 { // set bit
gpioMem[fenReg] |= bit
} else { // clear bit
gpioMem[fenReg] &^= bit
}
gpioMem[edsReg] = bit // to clear outdated detection
}
// EdgeDetected checks whether edge event occured since last call
// or since detection was enabled
//
// There is no way (yet) to handle interruption caused by edge event, you have to use polling.
//
// Event detection has to be enabled first, by pin.Detect(edge)
func EdgeDetected(pin Pin) bool {
p := uint8(pin)
// Event detect status register (16/17)
edsReg := p/32 + 16
test := gpioMem[edsReg] & (1 << (p & 31))
gpioMem[edsReg] = test // set bit to clear it
return test != 0
}
func PullMode(pin Pin, pull Pull) {
memlock.Lock()
defer memlock.Unlock()
if isBCM2711() {
pullreg := GPPUPPDN0 + (pin >> 4)
pullshift := (pin & 0xf) << 1
var p uint32
switch pull {
case PullOff:
p = 0
case PullUp:
p = 1
case PullDown:
p = 2
}
// This is verbatim C code from raspi-gpio.c
pullbits := gpioMem[pullreg]
pullbits &= ^(3 << pullshift)
pullbits |= (p << pullshift)
gpioMem[pullreg] = pullbits
} else {
// Pull up/down/off register has offset 38 / 39, pull is 37
pullClkReg := pin/32 + 38
pullReg := 37
shift := pin % 32
switch pull {
case PullDown, PullUp:
gpioMem[pullReg] |= uint32(pull)
case PullOff:
gpioMem[pullReg] &^= 3
}
// Wait for value to clock in, this is ugly, sorry :(
time.Sleep(time.Microsecond)
gpioMem[pullClkReg] = 1 << shift
// Wait for value to clock in
time.Sleep(time.Microsecond)
gpioMem[pullReg] &^= 3
gpioMem[pullClkReg] = 0
}
}
// SetFreq: Set clock speed for given pin in Clock or Pwm mode
//
// Param freq should be in range 4688Hz - 19.2MHz to prevent unexpected behavior,
// however output frequency of Pwm pins can be further adjusted with SetDutyCycle.
// So for smaller frequencies use Pwm pin with large cycle range. (Or implement custom software clock using output pin and sleep.)
//
// Note that some pins share the same clock source, it means that
// changing frequency for one pin will change it also for all pins within a group.
// The groups are:
// gp_clk0: pins 4, 20, 32, 34
// gp_clk1: pins 5, 21, 42, 44
// gp_clk2: pins 6 and 43
// pwm_clk: pins 12, 13, 18, 19, 40, 41, 45
func SetFreq(pin Pin, freq int) {
// TODO: would be nice to choose best clock source depending on target frequency, oscilator is used for now
sourceFreq := 19200000 // oscilator frequency
if isBCM2711() {
sourceFreq = 52000000
}
const divMask = 4095 // divi and divf have 12 bits each
divi := uint32(sourceFreq / freq)
divf := uint32(((sourceFreq % freq) << 12) / freq)
divi &= divMask
divf &= divMask
clkCtlReg := 28
clkDivReg := 28
switch pin {
case 4, 20, 32, 34: // clk0
clkCtlReg += 0
clkDivReg += 1
case 5, 21, 42, 44: // clk1
clkCtlReg += 2
clkDivReg += 3
case 6, 43: // clk2
clkCtlReg += 4
clkDivReg += 5
case 12, 13, 40, 41, 45, 18, 19: // pwm_clk - shared clk for both pwm channels
clkCtlReg += 12
clkDivReg += 13
StopPwm() // pwm clk busy wont go down without stopping pwm first
defer StartPwm()
default:
return
}
mash := uint32(1 << 9) // 1-stage MASH
if divi < 2 || divf == 0 {
mash = 0
}
memlock.Lock()
defer memlock.Unlock()
const PASSWORD = 0x5A000000
const busy = 1 << 7
const enab = 1 << 4
const src = 1 << 0 // oscilator
clkMem[clkCtlReg] = PASSWORD | (clkMem[clkCtlReg] &^ enab) // stop gpio clock (without changing src or mash)
for clkMem[clkCtlReg]&busy != 0 {
time.Sleep(time.Microsecond * 10)
} // ... and wait for not busy
clkMem[clkCtlReg] = PASSWORD | mash | src // set mash and source (without enabling clock)
clkMem[clkDivReg] = PASSWORD | (divi << 12) | divf // set dividers
// mash and src can not be changed in same step as enab, to prevent lock-up and glitches
time.Sleep(time.Microsecond * 10) // ... so wait for them to take effect
clkMem[clkCtlReg] = PASSWORD | mash | src | enab // finally start clock
// NOTE without root permission this changes will simply do nothing successfully
}
// SetDutyCycle: Set cycle length (range) and duty length (data) for Pwm pin in M/S mode
//
// |<- duty ->|
// __________
// _/ \_____________/
// |<------- cycle -------->|
//
// Output frequency is computed as pwm clock frequency divided by cycle length.
// So, to set Pwm pin to freqency 38kHz with duty cycle 1/4, use this combination:
//
// pin.Pwm()
// pin.DutyCycle(1, 4)
// pin.Freq(38000*4)
//
// Note that some pins share common pwm channel,
// so calling this function will set same duty cycle for all pins belonging to channel.
// The channels are:
// channel 1 (pwm0) for pins 12, 18, 40
// channel 2 (pwm1) for pins 13, 19, 41, 45.
//
// NOTE without root permission this function will simply do nothing successfully
func SetDutyCycle(pin Pin, dutyLen, cycleLen uint32) {
SetDutyCycleWithPwmMode(pin, dutyLen, cycleLen, MarkSpace)
}
// SetDutyCycleWithPwmMode extends SetDutyCycle to allow for the specification of the PWM
// algorithm to be used, Balanced or Mark/Space. The constants Balanced or MarkSpace
// as the value. See 'SetDutyCycle(pin, dutyLen, cycleLen)' above for more information
// regarding how to use 'SetDutyCycleWithPwmMode()'.
//
// NOTE without root permission this function will simply do nothing successfully
func SetDutyCycleWithPwmMode(pin Pin, dutyLen, cycleLen uint32, mode bool) {
const pwmCtlReg = 0
var (
pwmDatReg uint
pwmRngReg uint
shift uint // offset inside ctlReg
)
switch pin {
case 12, 18, 40: // channel pwm0
pwmRngReg = 4
pwmDatReg = 5
shift = 0
case 13, 19, 41, 45: // channel pwm1
pwmRngReg = 8
pwmDatReg = 9
shift = 8
default:
return
}
const ctlMask = 255 // ctl setting has 8 bits for each channel
const pwen = 1 << 0 // enable pwm
var msen uint32 = 0
// The MSEN1 field in the CTL register is at offset 7. This block starts with the assumption
// that 'msen' will be associated with channel 'pwm0'. If this is not the case, 'msen' will
// be further shifted in the next code block below to the MSEN2 field at offset 15.
if mode == MarkSpace {
msen = 1 << 7
}
// Shifting 'pwen' and 'msen' puts the associated values at the correct offset within the CTL
// register ('pwmCtlReg'). In addition, 'msen' is associated with a PWM channel depending on the
// value of 'pin' (see above). 'msen' will either stay at offset 7, as set above for channel 'pwm0',
// or be shifted 8 bits if the the associated 'pin' is on channel 'pwm1'.
pwmMem[pwmCtlReg] = pwmMem[pwmCtlReg]&^(ctlMask<<shift) | msen<<shift | pwen<<shift
// set duty cycle
pwmMem[pwmDatReg] = dutyLen
pwmMem[pwmRngReg] = cycleLen
time.Sleep(time.Microsecond * 10)
}
// StopPwm: Stop pwm for both channels
func StopPwm() {
const pwmCtlReg = 0
const pwen = 1
pwmMem[pwmCtlReg] &^= pwen<<8 | pwen
}
// StartPwm starts pwm for both channels
func StartPwm() {
const pwmCtlReg = 0
const pwen = 1
pwmMem[pwmCtlReg] |= pwen<<8 | pwen
}
// EnableIRQs: Enables given IRQs (by setting bit to 1 at intended position).
// See 'ARM peripherals interrupts table' in pheripherals datasheet.
// WARNING: you can corrupt your system, only use this if you know what you are doing.
func EnableIRQs(irqs uint64) {
const irqEnable1 = 0x210 / 4
const irqEnable2 = 0x214 / 4
intrMem[irqEnable1] = uint32(irqs) // IRQ 0..31
intrMem[irqEnable2] = uint32(irqs >> 32) // IRQ 32..63
}
// DisableIRQs: Disables given IRQs (by setting bit to 1 at intended position).
// See 'ARM peripherals interrupts table' in pheripherals datasheet.
// WARNING: you can corrupt your system, only use this if you know what you are doing.
func DisableIRQs(irqs uint64) {
const irqDisable1 = 0x21C / 4
const irqDisable2 = 0x220 / 4
intrMem[irqDisable1] = uint32(irqs) // IRQ 0..31
intrMem[irqDisable2] = uint32(irqs >> 32) // IRQ 32..63
}
func backupIRQs() {
const irqEnable1 = 0x210 / 4
const irqEnable2 = 0x214 / 4
irqsBackup = uint64(intrMem[irqEnable2])<<32 | uint64(intrMem[irqEnable1])
}
// Open and memory map GPIO memory range from /dev/mem .
// Some reflection magic is used to convert it to a unsafe []uint32 pointer
func Open() (err error) {
var file *os.File
// Open fd for rw mem access; try dev/mem first (need root)
file, err = os.OpenFile("/dev/mem", os.O_RDWR|os.O_SYNC, os.ModePerm)
if os.IsPermission(err) { // try gpiomem otherwise (some extra functions like clock and pwm setting wont work)
file, err = os.OpenFile("/dev/gpiomem", os.O_RDWR|os.O_SYNC, os.ModePerm)
}
if err != nil {
return
}
// FD can be closed after memory mapping
defer file.Close()
memlock.Lock()
defer memlock.Unlock()
// Memory map GPIO registers to slice
gpioMem, gpioMem8, err = memMap(file.Fd(), gpioBase)
if err != nil {
return
}
// Memory map clock registers to slice
clkMem, clkMem8, err = memMap(file.Fd(), clkBase)
if err != nil {
return
}
// Memory map pwm registers to slice
pwmMem, pwmMem8, err = memMap(file.Fd(), pwmBase)
if err != nil {
return
}
// Memory map spi registers to slice
spiMem, spiMem8, err = memMap(file.Fd(), spiBase)
if err != nil {
return
}
// Memory map interruption registers to slice
intrMem, intrMem8, err = memMap(file.Fd(), intrBase)
if err != nil {
return
}
backupIRQs() // back up enabled IRQs, to restore it later
return nil
}
func memMap(fd uintptr, base int64) (mem []uint32, mem8 []byte, err error) {
mem8, err = syscall.Mmap(
int(fd),
base,
memLength,
syscall.PROT_READ|syscall.PROT_WRITE,
syscall.MAP_SHARED,
)
if err != nil {
return
}
// Convert mapped byte memory to unsafe []uint32 pointer, adjust length as needed
header := *(*reflect.SliceHeader)(unsafe.Pointer(&mem8))
header.Len /= (32 / 8) // (32 bit = 4 bytes)
header.Cap /= (32 / 8)
mem = *(*[]uint32)(unsafe.Pointer(&header))
return
}
// Close unmaps GPIO memory
func Close() error {
EnableIRQs(irqsBackup) // Return IRQs to state where it was before - just to be nice
memlock.Lock()
defer memlock.Unlock()
for _, mem8 := range [][]uint8{gpioMem8, clkMem8, pwmMem8, spiMem8, intrMem8} {
if err := syscall.Munmap(mem8); err != nil {
return err
}
}
return nil
}
// Read /proc/device-tree/soc/ranges and determine the base address.
// Use the default Raspberry Pi 1 base address if this fails.
func readBase(offset int64) (int64, error) {
ranges, err := os.Open("/proc/device-tree/soc/ranges")
defer ranges.Close()
if err != nil {
return 0, err
}
b := make([]byte, 4)
n, err := ranges.ReadAt(b, offset)
if n != 4 || err != nil {
return 0, err
}
buf := bytes.NewReader(b)
var out uint32
err = binary.Read(buf, binary.BigEndian, &out)
if err != nil {
return 0, err
}
if out == 0 {
return 0, errors.New("rpio: GPIO base address not found")
}
return int64(out), nil
}
func getBase() int64 {
// Pi 2 & 3 GPIO base address is at offset 4
b, err := readBase(4)
if err == nil {
return b
}
// Pi 4 GPIO base address is as offset 8
b, err = readBase(8)
if err == nil {
return b
}
// Default to Pi 1
return int64(bcm2835Base)
}
// The Pi 4 uses a BCM 2711, which has different register offsets and base addresses than the rest of the Pi family (so far). This
// helper function checks if we're on a 2711 and hence a Pi 4
func isBCM2711() bool {
return gpioMem[GPPUPPDN3] != 0x6770696f
}