go-rpio/rpio.go
2017-11-19 17:23:48 +01:00

550 lines
12 KiB
Go

/*
Package rpio provides GPIO access on the Raspberry PI without any need
for external c libraries (ex: WiringPI or BCM2835).
Supports simple operations such as:
- Pin mode/direction (input/output/clock/pwm)
- Pin write (high/low)
- Pin read (high/low)
- Pull up/down/off
Example of use:
rpio.Open()
defer rpio.Close()
pin := rpio.Pin(4)
pin.Output()
for {
pin.Toggle()
time.Sleep(time.Second)
}
The library use the raw BCM2835 pinouts, not the ports as they are mapped
on the output pins for the raspberry pi
Rev 1 Raspberry Pi
+------+------+--------+
| GPIO | Phys | Name |
+------+------+--------+
| 0 | 3 | SDA |
| 1 | 5 | SCL |
| 4 | 7 | GPIO 7 |
| 7 | 26 | CE1 |
| 8 | 24 | CE0 |
| 9 | 21 | MISO |
| 10 | 19 | MOSI |
| 11 | 23 | SCLK |
| 14 | 8 | TxD |
| 15 | 10 | RxD |
| 17 | 11 | GPIO 0 |
| 18 | 12 | GPIO 1 |
| 21 | 13 | GPIO 2 |
| 22 | 15 | GPIO 3 |
| 23 | 16 | GPIO 4 |
| 24 | 18 | GPIO 5 |
| 25 | 22 | GPIO 6 |
+------+------+--------+
See the spec for full details of the BCM2835 controller:
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
*/
package rpio
import (
"bytes"
"encoding/binary"
"os"
"reflect"
"sync"
"syscall"
"time"
"unsafe"
)
type Mode uint8
type Pin uint8
type State uint8
type Pull uint8
// Memory offsets for gpio, see the spec for more details
const (
bcm2835Base = 0x20000000
gpioOffset = 0x200000
clkOffset = 0x101000
pwmOffset = 0x20C000
memLength = 4096
)
var (
gpioBase int64
clkBase int64
pwmBase int64
)
func init() {
base := getBase()
gpioBase = base + gpioOffset
clkBase = base + clkOffset
pwmBase = base + pwmOffset
}
// Pin mode, a pin can be set in Input or Output, Clock or Pwm mode
const (
Input Mode = iota
Output
Clock
Pwm
)
// State of pin, High / Low
const (
Low State = iota
High
)
// Pull Up / Down / Off
const (
PullOff Pull = iota
PullDown
PullUp
)
// Arrays for 8 / 32 bit access to memory and a semaphore for write locking
var (
memlock sync.Mutex
gpioMem []uint32
clkMem []uint32
pwmMem []uint32
gpioMem8 []uint8
clkMem8 []uint8
pwmMem8 []uint8
)
// Set pin as Input
func (pin Pin) Input() {
PinMode(pin, Input)
}
// Set pin as Output
func (pin Pin) Output() {
PinMode(pin, Output)
}
// Set pin as Clock
func (pin Pin) Clock() {
PinMode(pin, Clock)
}
// Set pin as Pwm
func (pin Pin) Pwm() {
PinMode(pin, Pwm)
}
// Set pin High
func (pin Pin) High() {
WritePin(pin, High)
}
// Set pin Low
func (pin Pin) Low() {
WritePin(pin, Low)
}
// Toggle pin state
func (pin Pin) Toggle() {
TogglePin(pin)
}
// Set frequency of Clock pin
func (pin Pin) Freq(freq int) {
SetFreq(pin, freq)
}
// Set duty cycle for pwm pin
func (pin Pin) DutyCycle(dutyLen, cycleLen uint32) {
SetDutyCycle(pin, dutyLen, cycleLen)
}
// Set pin Mode
func (pin Pin) Mode(mode Mode) {
PinMode(pin, mode)
}
// Set pin state (high/low)
func (pin Pin) Write(state State) {
WritePin(pin, state)
}
// Read pin state (high/low)
func (pin Pin) Read() State {
return ReadPin(pin)
}
// Set a given pull up/down mode
func (pin Pin) Pull(pull Pull) {
PullMode(pin, pull)
}
// Pull up pin
func (pin Pin) PullUp() {
PullMode(pin, PullUp)
}
// Pull down pin
func (pin Pin) PullDown() {
PullMode(pin, PullDown)
}
// Disable pullup/down on pin
func (pin Pin) PullOff() {
PullMode(pin, PullOff)
}
// PinMode sets the mode (direction) of a given pin (Input, Output, Clock or Pwm)
//
// Clock is possible only for pins 4, 5, 6, 20, 21
// Pwm is possible only for pins 12, 13, 18, 19
func PinMode(pin Pin, mode Mode) {
// Pin fsel register, 0 or 1 depending on bank
fselReg := uint8(pin) / 10
shift := (uint8(pin) % 10) * 3
f := uint32(0)
const alt0 = 4 // 100
const alt5 = 2 // 010
switch mode {
case Input:
f = 0 // 000
case Output:
f = 1 // 001
case Clock:
switch pin {
case 4, 5, 6, 32, 34, 42, 43, 44:
f = alt0
case 20, 21:
f = alt5
default:
return
}
case Pwm:
switch pin {
case 12, 13, 40, 41, 45:
f = alt0
case 18, 19:
f = alt5
default:
return
}
}
memlock.Lock()
defer memlock.Unlock()
const pinMask = 7 // 0b111 - pinmode is 3 bits
gpioMem[fselReg] = (gpioMem[fselReg] &^ (pinMask << shift)) | (f << shift)
}
// WritePin sets a given pin High or Low
// by setting the clear or set registers respectively
func WritePin(pin Pin, state State) {
p := uint8(pin)
// Clear register, 10 / 11 depending on bank
// Set register, 7 / 8 depending on bank
clearReg := p/32 + 10
setReg := p/32 + 7
memlock.Lock()
defer memlock.Unlock()
if state == Low {
gpioMem[clearReg] = 1 << (p & 31)
} else {
gpioMem[setReg] = 1 << (p & 31)
}
}
// Read the state of a pin
func ReadPin(pin Pin) State {
// Input level register offset (13 / 14 depending on bank)
levelReg := uint8(pin)/32 + 13
if (gpioMem[levelReg] & (1 << uint8(pin&31))) != 0 {
return High
}
return Low
}
// Toggle a pin state (high -> low -> high)
// TODO: probably possible to do this much faster without read
func TogglePin(pin Pin) {
switch ReadPin(pin) {
case Low:
pin.High()
case High:
pin.Low()
}
}
func PullMode(pin Pin, pull Pull) {
// Pull up/down/off register has offset 38 / 39, pull is 37
pullClkReg := pin/32 + 38
pullReg := 37
shift := pin % 32
memlock.Lock()
defer memlock.Unlock()
switch pull {
case PullDown, PullUp:
gpioMem[pullReg] = gpioMem[pullReg]&^3 | uint32(pull)
case PullOff:
gpioMem[pullReg] = gpioMem[pullReg] &^ 3
}
// Wait for value to clock in, this is ugly, sorry :(
time.Sleep(time.Microsecond)
gpioMem[pullClkReg] = 1 << shift
// Wait for value to clock in
time.Sleep(time.Microsecond)
gpioMem[pullReg] = gpioMem[pullReg] &^ 3
gpioMem[pullClkReg] = 0
}
// Set clock speed for given pin in Clock or Pwm mode
//
// freq should be in range 4688Hz - 19.2MHz to prevent unexpected behavior
// (for smaller frequencies use Pwm pin with large cycle range or implement custom software clock using output pin and sleep)
//
// Note that some pins share the same clock source, it means that
// changing frequency for one pin will change it also for all pins within a group
// The groups are: clk0 (4, 20, 32, 34), clk1 (5, 21, 42, 43) and clk2 (6 and 43)
// Also all pwm pins (12, 13, 18, 19, 40, 41, 45) share same source clock,
// but final output frequency of pwm chanel can be adjusted individually with setDutyCycle
func SetFreq(pin Pin, freq int) {
// TODO: would be nice to choose best clock source depending on target frequency, oscilator is used for now
const sourceFreq = 19200000 // oscilator frequency
const divMask = 4095 // divi and divf have 12 bits each
divi := uint32(sourceFreq / freq)
divf := uint32(((sourceFreq % freq) << 12) / freq)
divi &= divMask
divf &= divMask
clkCtlReg := 28
clkDivReg := 28
switch pin {
case 4, 20, 32, 34: // clk0
clkCtlReg += 0
clkDivReg += 1
case 5, 21, 42, 44: // clk1
clkCtlReg += 2
clkDivReg += 3
case 6, 43: // clk2
clkCtlReg += 4
clkDivReg += 5
case 12, 13, 40, 41, 45, 18, 19: // pwm_clk - shared clk for both pwm chanels
clkCtlReg += 12
clkDivReg += 13
StopPwm()
defer StartPwm()
default:
return
}
mash := uint32(1 << 9) // 1-stage MASH
if divi < 2 || divf == 0 {
mash = 0
}
memlock.Lock()
defer memlock.Unlock()
const PASSWORD = 0x5A000000
const busy = 1 << 7
const enab = 1 << 4
const src = 1 << 0 // oscilator
clkMem[clkCtlReg] = PASSWORD | (clkMem[clkCtlReg] &^ enab) // stop gpio clock (without changing src or mash)
for clkMem[clkCtlReg]&busy != 0 {
time.Sleep(time.Microsecond * 10)
} // ... and wait for not busy
clkMem[clkCtlReg] = PASSWORD | mash | src // set mash and source (without enabling clock)
clkMem[clkDivReg] = PASSWORD | (divi << 12) | divf // set dividers
// mash and src can not be changed in same step as enab, to prevent lock-up and glitches
time.Sleep(time.Microsecond * 10) // ... so wait for them to take effect
clkMem[clkCtlReg] = PASSWORD | mash | src | enab // finally start clock
// NOTE without root permission this changes will simply do nothing successfully
}
// Set cycle length (range) and duty length (data) for pwm in M/S mode
//
// |<- duty ->|
// __________
// _/ \___________/
// |<------ cycle ------->|
//
// Note that some pins share common pwm chanel,
// so calling this function will set same duty cycle for all pins belonig to chanel
// Its chanel pwm0 for pins 12, 18, 40, and pwm1 for pins 13, 19, 41, 45
func SetDutyCycle(pin Pin, dutyLen, cycleLen uint32) {
const pwmCtlReg = 0
var (
pwmDatReg uint
pwmRngReg uint
shift uint // offset inside ctlReg
)
switch pin {
case 12, 18, 40: // chanel pwm0
pwmDatReg = 4
pwmRngReg = 5
shift = 0
case 13, 19, 41, 45: // chanel pwm1
pwmDatReg = 8
pwmDatReg = 9
shift = 8
default:
return
}
const ctlMask = 255 // ctl setting has 8 bits for each chanel
const msen = 1 << 7 // use M/S transition instead of pwm algorithm
// reset settings
pwmMem[pwmCtlReg] = pwmMem[pwmCtlReg]&^(ctlMask<<shift) | msen<<shift
// set duty cycle
pwmMem[pwmDatReg] = dutyLen
pwmMem[pwmRngReg] = cycleLen
time.Sleep(time.Microsecond * 10)
}
// Stop pwm for both chanels
func StopPwm() {
const pwmCtlReg = 0
const pwen = 1
pwmMem[pwmCtlReg] = pwmMem[pwmCtlReg] &^ (pwen<<8 | pwen)
}
// start pwm for both chanels
func StartPwm() {
const pwmCtlReg = 0
const pwen = 1
pwmMem[pwmCtlReg] = pwmMem[pwmCtlReg] | pwen<<8 | pwen
}
// Open and memory map GPIO memory range from /dev/mem .
// Some reflection magic is used to convert it to a unsafe []uint32 pointer
func Open() (err error) {
var file *os.File
// Open fd for rw mem access; try dev/mem first (need root)
file, err = os.OpenFile("/dev/mem", os.O_RDWR|os.O_SYNC, 0)
if os.IsPermission(err) { // try gpiomem otherwise (some extra functions like clock and pwm setting wont work)
file, err = os.OpenFile("/dev/gpiomem", os.O_RDWR|os.O_SYNC, 0)
}
if err != nil {
return
}
// FD can be closed after memory mapping
defer file.Close()
memlock.Lock()
defer memlock.Unlock()
// Memory map GPIO registers to slice
gpioMem, gpioMem8, err = memMap(file.Fd(), gpioBase)
if err != nil {
return
}
// Memory map clock reisters to slice
clkMem, clkMem8, err = memMap(file.Fd(), clkBase)
if err != nil {
return
}
pwmMem, pwmMem8, err = memMap(file.Fd(), clkBase)
if err != nil {
return
}
return nil
}
func memMap(fd uintptr, base int64) (mem []uint32, mem8 []byte, err error) {
mem8, err = syscall.Mmap(
int(fd),
base,
memLength,
syscall.PROT_READ|syscall.PROT_WRITE,
syscall.MAP_SHARED,
)
if err != nil {
return
}
// Convert mapped byte memory to unsafe []uint32 pointer, adjust length as needed
header := *(*reflect.SliceHeader)(unsafe.Pointer(&mem8))
header.Len /= (32 / 8) // (32 bit = 4 bytes)
header.Cap /= (32 / 8)
mem = *(*[]uint32)(unsafe.Pointer(&header))
return
}
// Close unmaps GPIO memory
func Close() error {
memlock.Lock()
defer memlock.Unlock()
if err := syscall.Munmap(gpioMem8); err != nil {
return err
}
if err := syscall.Munmap(clkMem8); err != nil {
return err
}
return nil
}
// Read /proc/device-tree/soc/ranges and determine the base address.
// Use the default Raspberry Pi 1 base address if this fails.
func getBase() (base int64) {
base = bcm2835Base
ranges, err := os.Open("/proc/device-tree/soc/ranges")
defer ranges.Close()
if err != nil {
return
}
b := make([]byte, 4)
n, err := ranges.ReadAt(b, 4)
if n != 4 || err != nil {
return
}
buf := bytes.NewReader(b)
var out uint32
err = binary.Read(buf, binary.BigEndian, &out)
if err != nil {
return
}
return int64(out)
}