iris/middleware/jwt/jwt.go

780 lines
22 KiB
Go
Raw Normal View History

package jwt
import (
"crypto"
"encoding/json"
"fmt"
"os"
"strings"
"time"
"github.com/kataras/iris/v12/context"
"github.com/square/go-jose/v3"
"github.com/square/go-jose/v3/jwt"
)
func init() {
context.SetHandlerName("iris/middleware/jwt.*", "iris.jwt")
}
// TokenExtractor is a function that takes a context as input and returns
// a token. An empty string should be returned if no token found
// without additional information.
type TokenExtractor func(*context.Context) string
// FromHeader is a token extractor.
// It reads the token from the Authorization request header of form:
// Authorization: "Bearer {token}".
func FromHeader(ctx *context.Context) string {
authHeader := ctx.GetHeader("Authorization")
if authHeader == "" {
return ""
}
// pure check: authorization header format must be Bearer {token}
authHeaderParts := strings.Split(authHeader, " ")
if len(authHeaderParts) != 2 || strings.ToLower(authHeaderParts[0]) != "bearer" {
return ""
}
return authHeaderParts[1]
}
// FromQuery is a token extractor.
// It reads the token from the "token" url query parameter.
func FromQuery(ctx *context.Context) string {
return ctx.URLParam("token")
}
// FromJSON is a token extractor.
// Reads a json request body and extracts the json based on the given field.
// The request content-type should contain the: application/json header value, otherwise
// this method will not try to read and consume the body.
func FromJSON(jsonKey string) TokenExtractor {
return func(ctx *context.Context) string {
if ctx.GetContentTypeRequested() != context.ContentJSONHeaderValue {
return ""
}
var m context.Map
if err := ctx.ReadJSON(&m); err != nil {
return ""
}
if m == nil {
return ""
}
v, ok := m[jsonKey]
if !ok {
return ""
}
tok, ok := v.(string)
if !ok {
return ""
}
return tok
}
}
// JWT holds the necessary information the middleware need
// to sign and verify tokens.
//
// The `RSA(privateFile, publicFile, password)` package-level helper function
// can be used to decode the SignKey and VerifyKey.
//
// For an easy use look the `HMAC` package-level function
// and the its `NewUser` and `VerifyUser` methods.
type JWT struct {
// MaxAge is the expiration duration of the generated tokens.
MaxAge time.Duration
// Extractors are used to extract a raw token string value
// from the request.
// Builtin extractors:
// * FromHeader
// * FromQuery
// * FromJSON
// Defaults to a slice of `FromHeader` and `FromQuery`.
Extractors []TokenExtractor
// Signer is used to sign the token.
// It is set on `New` and `Default` package-level functions.
Signer jose.Signer
// VerificationKey is used to verify the token (public key).
VerificationKey interface{}
// Encrypter is used to, optionally, encrypt the token.
// It is set on `WithEncryption` method.
Encrypter jose.Encrypter
// DecriptionKey is used to decrypt the token (private key)
DecriptionKey interface{}
// Blocklist holds the invalidated-by-server tokens (that are not yet expired).
// It is not initialized by default.
// Initialization Usage:
// j.UseBlocklist()
// OR
// j.Blocklist = jwt.NewBlocklist(gcEveryDuration)
// Usage:
// - ctx.Logout()
// - j.Invalidate(ctx)
Blocklist *Blocklist
}
type privateKey interface{ Public() crypto.PublicKey }
// New returns a new JWT instance.
// It accepts a maximum time duration for token expiration
// and the algorithm among with its key for signing and verification.
//
// See `WithEncryption` method to add token encryption too.
// Use `Token` method to generate a new token string
// and `VerifyToken` method to decrypt, verify and bind claims of an incoming request token.
// Token, by default, is extracted by "Authorization: Bearer {token}" request header and
// url query parameter of "token". Token extractors can be modified through the `Extractors` field.
//
// For example, if you want to sign and verify using RSA-256 key:
// 1. Generate key file, e.g:
// $ openssl genrsa -des3 -out private.pem 2048
// 2. Read file contents with io.ReadFile("./private.pem")
// 3. Pass the []byte result to the `ParseRSAPrivateKey(contents, password)` package-level helper
// 4. Use the result *rsa.PrivateKey as "key" input parameter of this `New` function.
//
// See aliases.go file for available algorithms.
func New(maxAge time.Duration, alg SignatureAlgorithm, key interface{}) (*JWT, error) {
sig, err := jose.NewSigner(jose.SigningKey{
Algorithm: alg,
Key: key,
}, (&jose.SignerOptions{}).WithType("JWT"))
if err != nil {
return nil, err
}
j := &JWT{
Signer: sig,
VerificationKey: key,
MaxAge: maxAge,
Extractors: []TokenExtractor{FromHeader, FromQuery},
}
if s, ok := key.(privateKey); ok {
j.VerificationKey = s.Public()
}
return j, nil
}
// Default key filenames for `RSA`.
const (
DefaultSignFilename = "jwt_sign.key"
DefaultEncFilename = "jwt_enc.key"
)
// RSA returns a new `JWT` instance.
// It tries to parse RSA256 keys from "filenames[0]" (defaults to "jwt_sign.key") and
// "filenames[1]" (defaults to "jwt_enc.key") files or generates and exports new random keys.
//
// It panics on errors.
// Use the `New` package-level function instead for more options.
func RSA(maxAge time.Duration, filenames ...string) *JWT {
var (
signFilename = DefaultSignFilename
encFilename = DefaultEncFilename
)
switch len(filenames) {
case 1:
signFilename = filenames[0]
case 2:
encFilename = filenames[1]
}
// Do not try to create or load enc key if only sign key already exists.
withEncryption := true
if fileExists(signFilename) {
withEncryption = fileExists(encFilename)
}
sigKey, err := LoadRSA(signFilename, 2048)
if err != nil {
panic(err)
}
j, err := New(maxAge, RS256, sigKey)
if err != nil {
panic(err)
}
if withEncryption {
encKey, err := LoadRSA(encFilename, 2048)
if err != nil {
panic(err)
}
err = j.WithEncryption(A128CBCHS256, RSA15, encKey)
if err != nil {
panic(err)
}
}
return j
}
const (
signEnv = "JWT_SECRET"
encEnv = "JWT_SECRET_ENC"
)
func getenv(key string, def string) string {
v := os.Getenv(key)
if v == "" {
return def
}
return v
}
// HMAC returns a new `JWT` instance.
// It tries to read hmac256 secret keys from system environment variables:
// * JWT_SECRET for signing and verification key and
// * JWT_SECRET_ENC for encryption and decryption key
// and defaults them to the given "keys" respectfully.
//
// It panics on errors.
// Use the `New` package-level function instead for more options.
func HMAC(maxAge time.Duration, keys ...string) *JWT {
var defaultSignSecret, defaultEncSecret string
switch len(keys) {
case 1:
defaultSignSecret = keys[0]
case 2:
defaultEncSecret = keys[1]
}
signSecret := getenv(signEnv, defaultSignSecret)
encSecret := getenv(encEnv, defaultEncSecret)
j, err := New(maxAge, HS256, []byte(signSecret))
if err != nil {
panic(err)
}
if encSecret != "" {
err = j.WithEncryption(A128GCM, DIRECT, []byte(encSecret))
if err != nil {
panic(err)
}
}
return j
}
// WithEncryption method enables encryption and decryption of the token.
// It sets an appropriate encrypter(`Encrypter` and the `DecriptionKey` fields) based on the key type.
func (j *JWT) WithEncryption(contentEncryption ContentEncryption, alg KeyAlgorithm, key interface{}) error {
var publicKey interface{} = key
if s, ok := key.(privateKey); ok {
publicKey = s.Public()
}
enc, err := jose.NewEncrypter(contentEncryption, jose.Recipient{
Algorithm: alg,
Key: publicKey,
},
(&jose.EncrypterOptions{}).WithType("JWT").WithContentType("JWT"),
)
if err != nil {
return err
}
j.Encrypter = enc
j.DecriptionKey = key
return nil
}
// UseBlocklist initializes the Blocklist.
// Should be called on jwt middleware creation-time,
// after this, the developer can use the Context.Logout method
// to invalidate a verified token by the server-side.
func (j *JWT) UseBlocklist() {
gcEvery := 30 * time.Minute
if j.MaxAge > 0 {
gcEvery = j.MaxAge
}
j.Blocklist = NewBlocklist(gcEvery)
}
// ExpiryMap adds the expiration based on the "maxAge" to the "claims" map.
// It's called automatically on `Token` method.
func ExpiryMap(maxAge time.Duration, claims context.Map) {
now := time.Now()
if claims["exp"] == nil {
claims["exp"] = NewNumericDate(now.Add(maxAge))
}
if claims["iat"] == nil {
claims["iat"] = NewNumericDate(now)
}
}
// Token generates and returns a new token string.
// See `VerifyToken` too.
func (j *JWT) Token(claims interface{}) (string, error) {
return j.token(j.MaxAge, claims)
}
func (j *JWT) token(maxAge time.Duration, claims interface{}) (string, error) {
if claims == nil {
return "", ErrInvalidKey
}
c, nErr := normalize(claims)
if nErr != nil {
return "", nErr
}
ExpiryMap(maxAge, c)
var (
token string
err error
)
// jwt.Builder and jwt.NestedBuilder contain same methods but they are not the same.
//
// Note that the .Claims method there, converts a Struct to a map under the hoods.
// That means that we will not have any performance cost
// if we do it by ourselves and pass always a Map there.
// That gives us the option to allow user to pass ANY go struct
// and we can add the "exp", "nbf", "iat" map values by ourselves
// based on the j.MaxAge.
// (^ done, see normalize, all methods are
// changed to accept totally custom types, no need to embed the standard Claims anymore).
if j.DecriptionKey != nil {
token, err = jwt.SignedAndEncrypted(j.Signer, j.Encrypter).Claims(c).CompactSerialize()
} else {
token, err = jwt.Signed(j.Signer).Claims(c).CompactSerialize()
}
if err != nil {
return "", err
}
return token, nil
}
// WriteToken is a helper which just generates(calls the `Token` method) and writes
// a new token to the client in plain text format.
//
// Use the `Token` method to get a new generated token raw string value.
func (j *JWT) WriteToken(ctx *context.Context, claims interface{}) error {
token, err := j.Token(claims)
if err != nil {
ctx.StatusCode(500)
return err
}
_, err = ctx.WriteString(token)
return err
}
// VerifyToken verifies (and decrypts) the request token,
// it also validates and binds the parsed token's claims to the "claimsPtr" (destination).
//
// The last, variadic, input argument is optionally, if provided then the
// parsed claims must match the expectations;
// e.g. Audience, Issuer, ID, Subject.
// See `ExpectXXX` package-functions for details.
func (j *JWT) VerifyToken(ctx *context.Context, claimsPtr interface{}, expectations ...Expectation) (*TokenInfo, error) {
token := j.RequestToken(ctx)
return j.VerifyTokenString(ctx, token, claimsPtr, expectations...)
}
// RequestToken extracts the token from the request.
func (j *JWT) RequestToken(ctx *context.Context) (token string) {
for _, extract := range j.Extractors {
if token = extract(ctx); token != "" {
break // ok we found it.
}
}
return
}
// TokenSetter is an interface which if implemented
// the extracted, verified, token is stored to the object.
type TokenSetter interface {
SetToken(token string)
}
// TokenInfo holds the standard token information may required
// for further actions.
// This structure is mostly useful when the developer's go structure
// does not hold the standard jwt fields (e.g. "exp")
// but want access to the parsed token which contains those fields.
// Inside the middleware, it is used to invalidate tokens through server-side, see `Invalidate`.
type TokenInfo struct {
RequestToken string // The request token.
Claims Claims // The standard JWT parsed fields from the request Token.
Value interface{} // The pointer to the end-developer's custom claims structure (see `Get`).
}
const tokenInfoContextKey = "iris.jwt.token"
// Get returns the verified developer token claims.
//
//
// Usage:
// j := jwt.New(...)
// app.Use(j.Verify(func() interface{} { return new(CustomClaims) }))
// app.Post("/restricted", func(ctx iris.Context){
// claims := jwt.Get(ctx).(*CustomClaims)
// [use claims...]
// })
//
// Note that there is one exception, if the value was a pointer
// to a map[string]interface{}, it returns the map itself so it can be
// accessible directly without the requirement of unwrapping it, e.g.
// j.Verify(func() interface{} {
// return &iris.Map{}
// }
// [...]
// claims := jwt.Get(ctx).(iris.Map)
func Get(ctx *context.Context) interface{} {
if tok := GetTokenInfo(ctx); tok != nil {
switch v := tok.Value.(type) {
case *context.Map:
return *v
case *json.RawMessage:
// This is useful when we can accept more than one
// type of JWT token in the same request path,
// but we also want to keep type safety.
// Usage:
// type myClaims struct { Roles []string `json:"roles"`}
// v := jwt.Get(ctx)
// var claims myClaims
// jwt.Unmarshal(v, &claims)
// [...claims.Roles]
return *v
default:
return v
}
}
return nil
}
// GetTokenInfo returns the verified token's information.
func GetTokenInfo(ctx *context.Context) *TokenInfo {
if v := ctx.Values().Get(tokenInfoContextKey); v != nil {
if t, ok := v.(*TokenInfo); ok {
return t
}
}
return nil
}
// Invalidate invalidates a verified JWT token.
// It adds the request token, retrieved by Verify methods, to the block list.
// Next request will be blocked, even if the token was not yet expired.
// This method can be used when the client-side does not clear the token
// on a user logout operation.
//
// Note: the Blocklist should be initialized before serve-time: j.UseBlocklist().
func (j *JWT) Invalidate(ctx *context.Context) {
if j.Blocklist == nil {
ctx.Application().Logger().Debug("jwt.Invalidate: Blocklist is nil")
return
}
tokenInfo := GetTokenInfo(ctx)
if tokenInfo == nil {
return
}
j.Blocklist.Set(tokenInfo.RequestToken, tokenInfo.Claims.Expiry.Time())
}
// VerifyTokenString verifies and unmarshals an extracted request token to "dest" destination.
// The last variadic input indicates any further validations against the verified token claims.
// If the given "dest" is a valid context.User then ctx.User() will return it.
// If the token is missing an `ErrMissing` is returned.
// If the incoming token was expired an `ErrExpired` is returned.
// If the incoming token was blocked by the server an `ErrBlocked` is returned.
func (j *JWT) VerifyTokenString(ctx *context.Context, token string, dest interface{}, expectations ...Expectation) (*TokenInfo, error) {
if token == "" {
return nil, ErrMissing
}
var (
parsedToken *jwt.JSONWebToken
err error
)
if j.DecriptionKey != nil {
t, cerr := jwt.ParseSignedAndEncrypted(token)
if cerr != nil {
return nil, cerr
}
parsedToken, err = t.Decrypt(j.DecriptionKey)
} else {
parsedToken, err = jwt.ParseSigned(token)
}
if err != nil {
return nil, err
}
var (
claims Claims
tokenMaxAger tokenWithMaxAge
)
if err = parsedToken.Claims(j.VerificationKey, dest, &claims, &tokenMaxAger); err != nil {
return nil, err
}
expectMaxAge := j.MaxAge
// Build the Expected value.
expected := Expected{}
for _, e := range expectations {
if e != nil {
// expection can be used as a field validation too (see MeetRequirements).
if err = e(&expected, dest); err != nil {
if err == ErrExpectRefreshToken {
if tokenMaxAger.MaxAge > 0 {
// If max age exists, grab it and compare it later.
// Otherwise fire the ErrExpectRefreshToken.
expectMaxAge = tokenMaxAger.MaxAge
continue
}
}
return nil, err
}
}
}
gotMaxAge := getMaxAge(claims)
if !compareMaxAge(expectMaxAge, gotMaxAge) {
// Additional check to automatically invalidate
// any previous jwt maxAge setting change.
// In-short, if the time.Now().Add j.MaxAge
// does not match the "iat" (issued at) then we invalidate the token.
return nil, ErrInvalidMaxAge
}
// For other standard JWT claims fields such as "exp"
// The developer can just add a field of Expiry *NumericDate `json:"exp"`
// and will be filled by the parsed token automatically.
// No need for more interfaces.
err = validateClaims(ctx, dest, claims, expected)
if err != nil {
if err == ErrExpired {
// If token was expired remove it from the block list.
if j.Blocklist != nil {
j.Blocklist.Del(token)
}
}
return nil, err
}
if j.Blocklist != nil {
// If token exists in the block list, then stop here.
if j.Blocklist.Has(token) {
return nil, ErrBlocked
}
}
if ut, ok := dest.(TokenSetter); ok {
// The u.Token is empty even if we set it and export it on JSON structure.
// Set it manually.
ut.SetToken(token)
}
// Set the information.
tokenInfo := &TokenInfo{
RequestToken: token,
Claims: claims,
Value: dest,
}
return tokenInfo, nil
}
// TokenPair holds the access token and refresh token response.
type TokenPair struct {
AccessToken string `json:"access_token"`
RefreshToken string `json:"refresh_token"`
}
type tokenWithMaxAge struct {
// Useful to separate access from refresh tokens.
// Can be used to by-pass the internal check of expected
// MaxAge setting to match the token's received max age too.
MaxAge time.Duration `json:"tokenMaxAge"`
}
// TokenPair generates a token pair of access and refresh tokens.
// The first two arguments required for the refresh token
// and the last one is the claims for the access token one.
func (j *JWT) TokenPair(refreshMaxAge time.Duration, refreshClaims interface{}, accessClaims interface{}) (TokenPair, error) {
if refreshMaxAge <= j.MaxAge {
return TokenPair{}, fmt.Errorf("refresh max age should be bigger than access token's one[%d - %d]", refreshMaxAge, j.MaxAge)
}
accessToken, err := j.Token(accessClaims)
if err != nil {
return TokenPair{}, err
}
c, err := normalize(refreshClaims)
if err != nil {
return TokenPair{}, err
}
if c == nil {
c = make(context.Map)
}
// need to validate against its value instead of the setting's one (see `VerifyTokenString`).
c["tokenMaxAge"] = refreshMaxAge
refreshToken, err := j.token(refreshMaxAge, c)
if err != nil {
return TokenPair{}, nil
}
pair := TokenPair{
AccessToken: accessToken,
RefreshToken: refreshToken,
}
return pair, nil
}
// Verify returns a middleware which
// decrypts an incoming request token to the result of the given "newPtr".
// It does write a 401 unauthorized status code if verification or decryption failed.
// It calls the `ctx.Next` on verified requests.
//
// Iit unmarshals the token to the specific type returned from the given "newPtr" function.
// It sets the Context User and User's Token too. So the next handler(s)
// of the same chain can access the User through a `Context.User()` call.
//
// Note unlike `VerifyToken`, this method automatically protects
// the claims with JSON required tags (see `MeetRequirements` Expection).
//
// On verified tokens:
// - The information can be retrieved through `Get` and `GetTokenInfo` functions.
// - User is set if the newPtr returns a valid Context User
// - The Context Logout method is set if Blocklist was initialized
// Any error is captured to the Context,
// which can be retrieved by a `ctx.GetErr()` call.
//
// See `VerifyJSON` too.
func (j *JWT) Verify(newPtr func() interface{}, expections ...Expectation) context.Handler {
if newPtr == nil {
newPtr = func() interface{} {
// Return a map here as the default type one,
// as it does allow .Get callers to access its fields with ease
// (although, I always recommend using structs for type-safety and
// also they can accept a required tag option too).
return &context.Map{}
}
}
expections = append(expections, MeetRequirements(newPtr()))
return func(ctx *context.Context) {
ptr := newPtr()
tokenInfo, err := j.VerifyToken(ctx, ptr, expections...)
if err != nil {
ctx.Application().Logger().Debugf("iris.jwt.Verify: %v", err)
ctx.StopWithError(401, context.PrivateError(err))
return
}
if u, ok := ptr.(context.User); ok {
ctx.SetUser(u)
}
if j.Blocklist != nil {
ctx.SetLogoutFunc(j.Invalidate)
}
ctx.Values().Set(tokenInfoContextKey, tokenInfo)
ctx.Next()
}
}
// VerifyJSON works like `Verify` but instead it
// binds its "newPtr" function to return a raw JSON message.
// This allows the caller to bind this JSON message to any Go structure (or map).
// This is useful when we can accept more than one
// type of JWT token in the same request path,
// but we also want to keep type safety.
// Usage:
// app.Use(jwt.VerifyJSON())
// Inside a route Handler:
// claims := struct { Roles []string `json:"roles"`}{}
// jwt.ReadJSON(ctx, &claims)
// ...access to claims.Roles as []string
func (j *JWT) VerifyJSON(expections ...Expectation) context.Handler {
return j.Verify(func() interface{} {
return new(json.RawMessage)
})
}
// ReadJSON is a helper which binds "claimsPtr" to the
// raw JSON token claims.
// Use inside the handlers when `VerifyJSON()` middleware was registered.
func ReadJSON(ctx *context.Context, claimsPtr interface{}) error {
v := Get(ctx)
if v == nil {
return ErrMissing
}
data, ok := v.(json.RawMessage)
if !ok {
return ErrMissing
}
return Unmarshal(data, claimsPtr)
}
// NewUser returns a new User based on the given "opts".
// The caller can modify the User until its `GetToken` is called.
func (j *JWT) NewUser(opts ...UserOption) *User {
u := &User{
j: j,
SimpleUser: &context.SimpleUser{
Authorization: "IRIS_JWT_USER", // Used to separate a refresh token with a user/access one too.
Features: []context.UserFeature{
context.TokenFeature,
},
},
}
for _, opt := range opts {
opt(u)
}
return u
}
// VerifyUser works like the `Verify` method but instead
// it unmarshals the token to the specific User type.
// It sets the Context User too. So the next handler(s)
// of the same chain can access the User through a `Context.User()` call.
func (j *JWT) VerifyUser() context.Handler {
return j.Verify(func() interface{} {
return new(User)
})
}