package sessions import ( "sync" "time" "github.com/kataras/iris/core/memstore" ) type ( // provider contains the sessions and external databases (load and update). // It's the session memory manager provider struct { // we don't use RWMutex because all actions have read and write at the same action function. // (or write to a *Session's value which is race if we don't lock) // narrow locks are fasters but are useless here. mu sync.Mutex sessions map[string]*Session databases []Database } ) // newProvider returns a new sessions provider func newProvider() *provider { return &provider{ sessions: make(map[string]*Session, 0), databases: make([]Database, 0), } } // RegisterDatabase adds a session database // a session db doesn't have write access func (p *provider) RegisterDatabase(db Database) { p.mu.Lock() // for any case p.databases = append(p.databases, db) p.mu.Unlock() } // newSession returns a new session from sessionid func (p *provider) newSession(sid string, expires time.Duration) *Session { sess := &Session{ sid: sid, provider: p, values: p.loadSessionValuesFromDB(sid), flashes: make(map[string]*flashMessage), } if expires > 0 { // if not unlimited life duration and no -1 (cookie remove action is based on browser's session) time.AfterFunc(expires, func() { // the destroy makes the check if this session is exists then or not, // this is used to destroy the session from the server-side also // it's good to have here for security reasons, I didn't add it on the gc function to separate its action p.Destroy(sid) }) } return sess } // can return nil func (p *provider) loadSessionValuesFromDB(sid string) memstore.Store { var store memstore.Store for i, n := 0, len(p.databases); i < n; i++ { if dbValues := p.databases[i].Load(sid); dbValues != nil && len(dbValues) > 0 { for k, v := range dbValues { store.Set(k, v) } } } return store } func (p *provider) updateDatabases(sid string, store memstore.Store) { if l := store.Len(); l > 0 { mapValues := make(map[string]interface{}, l) store.Visit(func(k string, v interface{}) { mapValues[k] = v }) for i, n := 0, len(p.databases); i < n; i++ { p.databases[i].Update(sid, mapValues) } } } // Init creates the session and returns it func (p *provider) Init(sid string, expires time.Duration) *Session { newSession := p.newSession(sid, expires) p.mu.Lock() p.sessions[sid] = newSession p.mu.Unlock() return newSession } // Read returns the store which sid parameter belongs func (p *provider) Read(sid string, expires time.Duration) *Session { p.mu.Lock() if sess, found := p.sessions[sid]; found { sess.runFlashGC() // run the flash messages GC, new request here of existing session p.mu.Unlock() return sess } p.mu.Unlock() return p.Init(sid, expires) // if not found create new } // Destroy destroys the session, removes all sessions and flash values, // the session itself and updates the registered session databases, // this called from sessionManager which removes the client's cookie also. func (p *provider) Destroy(sid string) { p.mu.Lock() if sess, found := p.sessions[sid]; found { sess.values = nil sess.flashes = nil delete(p.sessions, sid) p.updateDatabases(sid, nil) } p.mu.Unlock() } // DestroyAll removes all sessions // from the server-side memory (and database if registered). // Client's session cookie will still exist but it will be reseted on the next request. func (p *provider) DestroyAll() { p.mu.Lock() for _, sess := range p.sessions { delete(p.sessions, sess.ID()) p.updateDatabases(sess.ID(), nil) } p.mu.Unlock() }