package mvc2 import ( "fmt" "reflect" "github.com/kataras/golog" "github.com/kataras/iris/context" "github.com/kataras/iris/mvc/activator/methodfunc" ) // checks if "handler" is context.Handler; func(context.Context). func isContextHandler(handler interface{}) (context.Handler, bool) { h, is := handler.(context.Handler) if !is { fh, is := handler.(func(context.Context)) if is { return fh, is } } return h, is } func validateHandler(handler interface{}) error { if typ := reflect.TypeOf(handler); !isFunc(typ) { return fmt.Errorf("handler expected to be a kind of func but got typeof(%s)", typ.String()) } return nil } var ( contextTyp = reflect.TypeOf(context.NewContext(nil)) emptyIn = []reflect.Value{} ) // MustMakeHandler calls the `MakeHandler` and returns its first resultthe low-level handler), see its docs. // It panics on error. func MustMakeHandler(handler interface{}, binders []*InputBinder) context.Handler { h, err := MakeHandler(handler, binders) if err != nil { panic(err) } return h } // MakeHandler accepts a "handler" function which can accept any input that matches // with the "binders" and any output, that matches the mvc types, like string, int (string,int), // custom structs, Result(View | Response) and anything that you already know that mvc implementation supports, // and returns a low-level `context/iris.Handler` which can be used anywhere in the Iris Application, // as middleware or as simple route handler or party handler or subdomain handler-router. func MakeHandler(handler interface{}, binders []*InputBinder) (context.Handler, error) { if err := validateHandler(handler); err != nil { golog.Errorf("mvc handler: %v", err) return nil, err } if h, is := isContextHandler(handler); is { golog.Warnf("mvc handler: you could just use the low-level API to register a context handler instead") return h, nil } typ := indirectTyp(reflect.TypeOf(handler)) n := typ.NumIn() typIn := make([]reflect.Type, n, n) for i := 0; i < n; i++ { typIn[i] = typ.In(i) } m := getBindersForInput(binders, typIn...) /* // no f. this, it's too complicated and it will be harder to maintain later on: // the only case that these are not equal is when // binder returns a slice and input contains one or more inputs. */ if len(m) != n { err := fmt.Errorf("input arguments length(%d) of types(%s) and valid binders length(%d) are not equal", n, typIn, len(m)) golog.Errorf("mvc handler: %v", err) return nil, err } hasIn := len(m) > 0 fn := reflect.ValueOf(handler) // if has no input to bind then execute the "handler" using the mvc style // for any output parameters. if !hasIn { return func(ctx context.Context) { methodfunc.DispatchFuncResult(ctx, fn.Call(emptyIn)) }, nil } return func(ctx context.Context) { // we could use other tricks for "in" // here but let's stick to that which is clearly // that it doesn't keep any previous state // and it allocates exactly what we need, // so we can set via index instead of append. // The other method we could use is to // declare the in on the build state (before the return) // and use in[0:0] with append later on. in := make([]reflect.Value, n, n) ctxValues := []reflect.Value{reflect.ValueOf(ctx)} for k, v := range m { in[k] = v.BindFunc(ctxValues) /* // no f. this, it's too complicated and it will be harder to maintain later on: // now an additional check if it's array and has more inputs of the same type // and all these results to the expected inputs. // n-1: if has more to set. result := v.BindFunc(ctxValues) if isSliceAndExpectedItem(result.Type(), in, k) { // if kind := result.Kind(); (kind == reflect.Slice || kind == reflect.Array) && n-1 > k { prev := 0 for j, nn := 1, result.Len(); j < nn; j++ { item := result.Slice(prev, j) prev++ // remember; we already set the inputs type, so we know // what the function expected to have. if !equalTypes(item.Type(), in[k+1].Type()) { break } in[k+1] = item } } else { in[k] = result } */ if ctx.IsStopped() { return } } methodfunc.DispatchFuncResult(ctx, fn.Call(in)) }, nil }