iris/core/host/supervisor.go
2021-08-12 14:09:44 +02:00

526 lines
16 KiB
Go

package host
import (
"context"
"crypto/tls"
"errors"
"fmt"
"net"
"net/http"
"net/url"
"os"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/kataras/iris/v12/core/netutil"
"golang.org/x/crypto/acme/autocert"
)
// Configurator provides an easy way to modify
// the Supervisor.
//
// Look the `Configure` func for more.
type Configurator func(su *Supervisor)
// Supervisor is the wrapper and the manager for a compatible server
// and it's relative actions, called Tasks.
//
// Interfaces are separated to return relative functionality to them.
type Supervisor struct {
Server *http.Server
// FriendlyAddr can be set to customize the "Now Listening on: {FriendlyAddr}".
FriendlyAddr string // e.g mydomain.com instead of :443 when AutoTLS is used, see `WriteStartupLogOnServe` task.
disableHTTP1ToHTTP2Redirection bool
closedManually uint32 // future use, accessed atomically (non-zero means we've called the Shutdown)
closedByInterruptHandler uint32 // non-zero means that the end-developer interrupted it by-purpose.
manuallyTLS bool // we need that in order to determinate what to output on the console before the server begin.
autoTLS bool
shouldWait int32 // non-zero means that the host should wait for unblocking
unblockChan chan struct{}
mu sync.Mutex
onServe []func(TaskHost)
// IgnoreErrors should contains the errors that should be ignored
// on both serve functions return statements and error handlers.
//
// Note that this will match the string value instead of the equality of the type's variables.
//
// Defaults to empty.
IgnoredErrors []string
onErr []func(error)
// Fallback should return a http.Server, which may already running
// to handle the HTTP/1.1 clients when TLS/AutoTLS.
// On manual TLS the accepted "challengeHandler" just returns the passed handler,
// otherwise it binds to the acme challenge wrapper.
// Example:
// Fallback = func(h func(fallback http.Handler) http.Handler) *http.Server {
// s := &http.Server{
// Handler: h(myServerHandler),
// ...otherOptions
// }
// go s.ListenAndServe()
// return s
// }
Fallback func(challegeHandler func(fallback http.Handler) http.Handler) *http.Server
// See `iris.Configuration.SocketSharding`.
SocketSharding bool
// If more than zero then tcp keep alive listener is attached instead of the simple TCP listener.
// See `iris.Configuration.KeepAlive`
KeepAlive time.Duration
}
// New returns a new host supervisor
// based on a native net/http "srv".
//
// It contains all native net/http's Server methods.
// Plus you can add tasks on specific events.
// It has its own flow, which means that you can prevent
// to return and exit and restore the flow too.
func New(srv *http.Server) *Supervisor {
return &Supervisor{
Server: srv,
unblockChan: make(chan struct{}, 1),
}
}
// Configure accepts one or more `Configurator`.
// With this function you can use simple functions
// that are spread across your app to modify
// the supervisor, these Configurators can be
// used on any Supervisor instance.
//
// Look `Configurator` too.
//
// Returns itself.
func (su *Supervisor) Configure(configurators ...Configurator) *Supervisor {
for _, conf := range configurators {
conf(su)
}
return su
}
// NoRedirect should be called before `ListenAndServeTLS` when
// secondary http1 to http2 server is not required. This method will disable
// the automatic registration of secondary http.Server
// which would redirect "http://" requests to their "https://" equivalent.
func (su *Supervisor) NoRedirect() {
su.disableHTTP1ToHTTP2Redirection = true
}
// DeferFlow defers the flow of the exeuction,
// i.e: when server should return error and exit
// from app, a DeferFlow call inside a Task
// can wait for a `RestoreFlow` to exit or not exit if
// host's server is "fixed".
//
// See `RestoreFlow` too.
func (su *Supervisor) DeferFlow() {
atomic.StoreInt32(&su.shouldWait, 1)
}
// RestoreFlow restores the flow of the execution,
// if called without a `DeferFlow` call before
// then it does nothing.
// See tests to understand how that can be useful on specific cases.
//
// See `DeferFlow` too.
func (su *Supervisor) RestoreFlow() {
if su.isWaiting() {
atomic.StoreInt32(&su.shouldWait, 0)
su.mu.Lock()
su.unblockChan <- struct{}{}
su.mu.Unlock()
}
}
func (su *Supervisor) isWaiting() bool {
return atomic.LoadInt32(&su.shouldWait) != 0
}
func (su *Supervisor) newListener() (net.Listener, error) {
var (
l net.Listener
err error
)
if su.KeepAlive > 0 {
l, err = netutil.TCPKeepAlive(su.Server.Addr, su.SocketSharding, su.KeepAlive)
} else {
l, err = netutil.TCP(su.Server.Addr, su.SocketSharding)
}
if err != nil {
return nil, err
}
// here we can check for sure, without the need of the supervisor's `manuallyTLS` field.
if netutil.IsTLS(su.Server) {
// means tls
tlsl := tls.NewListener(l, su.Server.TLSConfig)
return tlsl, nil
}
return l, nil
}
// RegisterOnError registers a function to call when errors occurred by the underline http server.
func (su *Supervisor) RegisterOnError(cb func(error)) {
su.mu.Lock()
su.onErr = append(su.onErr, cb)
su.mu.Unlock()
}
func (su *Supervisor) validateErr(err error) error {
if err == nil {
return nil
}
if errors.Is(err, http.ErrServerClosed) && atomic.LoadUint32(&su.closedByInterruptHandler) > 0 {
return nil
}
su.mu.Lock()
defer su.mu.Unlock()
for _, e := range su.IgnoredErrors {
if err.Error() == e {
return nil
}
}
return err
}
func (su *Supervisor) notifyErr(err error) {
err = su.validateErr(err)
if err != nil {
su.mu.Lock()
for _, f := range su.onErr {
go f(err)
}
su.mu.Unlock()
}
}
// RegisterOnServe registers a function to call on
// Serve/ListenAndServe/ListenAndServeTLS/ListenAndServeAutoTLS.
func (su *Supervisor) RegisterOnServe(cb func(TaskHost)) {
su.mu.Lock()
su.onServe = append(su.onServe, cb)
su.mu.Unlock()
}
func (su *Supervisor) notifyServe(host TaskHost) {
su.mu.Lock()
for _, f := range su.onServe {
go f(host)
}
su.mu.Unlock()
}
// Remove all channels, do it with events
// or with channels but with a different channel on each task proc
// I don't know channels are not so safe, when go func and race risk..
// so better with callbacks....
func (su *Supervisor) supervise(blockFunc func() error) error {
host := createTaskHost(su)
su.notifyServe(host)
atomic.StoreUint32(&su.closedByInterruptHandler, 0)
atomic.StoreUint32(&su.closedManually, 0)
err := blockFunc()
su.notifyErr(err)
if su.isWaiting() {
for range su.unblockChan {
break
}
}
return su.validateErr(err)
}
// Serve accepts incoming connections on the Listener l, creating a
// new service goroutine for each. The service goroutines read requests and
// then call su.server.Handler to reply to them.
//
// For HTTP/2 support, server.TLSConfig should be initialized to the
// provided listener's TLS Config before calling Serve. If
// server.TLSConfig is non-nil and doesn't include the string "h2" in
// Config.NextProtos, HTTP/2 support is not enabled.
//
// Serve always returns a non-nil error. After Shutdown or Close, the
// returned error is http.ErrServerClosed.
func (su *Supervisor) Serve(l net.Listener) error {
return su.supervise(func() error { return su.Server.Serve(l) })
}
// ListenAndServe listens on the TCP network address addr
// and then calls Serve with handler to handle requests
// on incoming connections.
// Accepted connections are configured to enable TCP keep-alives.
func (su *Supervisor) ListenAndServe() error {
l, err := su.newListener()
if err != nil {
return err
}
return su.Serve(l)
}
func loadCertificate(c, k string) (*tls.Certificate, error) {
var (
cert tls.Certificate
err error
)
if fileExists(c) && fileExists(k) {
// act them as files in the system.
cert, err = tls.LoadX509KeyPair(c, k)
} else {
// act them as raw contents.
cert, err = tls.X509KeyPair([]byte(c), []byte(k))
}
if err != nil {
return nil, err
}
return &cert, nil
}
// ListenAndServeTLS acts identically to ListenAndServe, except that it
// expects HTTPS connections. Additionally, files containing a certificate and
// matching private key for the server must be provided. If the certificate
// is signed by a certificate authority, the certFile should be the concatenation
// of the server's certificate, any intermediates, and the CA's certificate.
func (su *Supervisor) ListenAndServeTLS(certFileOrContents string, keyFileOrContents string) error {
var getCertificate func(*tls.ClientHelloInfo) (*tls.Certificate, error)
// If tls.Config configured manually through a host configurator then skip that
// and let the redirection service registered alone.
// e.g. https://github.com/kataras/iris/issues/1481#issuecomment-605621255
if su.Server.TLSConfig == nil {
if certFileOrContents == "" && keyFileOrContents == "" {
return errors.New("empty certFileOrContents or keyFileOrContents and Server.TLSConfig")
}
cert, err := loadCertificate(certFileOrContents, keyFileOrContents)
if err != nil {
return err
}
getCertificate = func(*tls.ClientHelloInfo) (*tls.Certificate, error) {
return cert, nil
}
}
su.manuallyTLS = true
return su.runTLS(getCertificate, nil)
}
// ListenAndServeAutoTLS acts identically to ListenAndServe, except that it
// expects HTTPS connections. Server's certificates are auto generated from LETSENCRYPT using
// the golang/x/net/autocert package.
//
// The whitelisted domains are separated by whitespace in "domain" argument, i.e "iris-go.com".
// If empty, all hosts are currently allowed. This is not recommended,
// as it opens a potential attack where clients connect to a server
// by IP address and pretend to be asking for an incorrect host name.
// Manager will attempt to obtain a certificate for that host, incorrectly,
// eventually reaching the CA's rate limit for certificate requests
// and making it impossible to obtain actual certificates.
//
// For an "e-mail" use a non-public one, letsencrypt needs that for your own security.
//
// The "cacheDir" is being, optionally, used to provide cache
// stores and retrieves previously-obtained certificates.
// If empty, certs will only be cached for the lifetime of the auto tls manager.
//
// Note: The domain should be like "iris-go.com www.iris-go.com",
// the e-mail like "kataras2006@hotmail.com" and the cacheDir like "letscache"
// The `ListenAndServeAutoTLS` will start a new server for you,
// which will redirect all http versions to their https, including subdomains as well.
func (su *Supervisor) ListenAndServeAutoTLS(domain string, email string, cacheDir string) error {
var (
cache autocert.Cache
hostPolicy autocert.HostPolicy
)
if cacheDir != "" {
cache = autocert.DirCache(cacheDir)
}
if strings.TrimSpace(domain) != "" {
domains := strings.Split(domain, " ")
su.FriendlyAddr = strings.Join(domains, ", ")
hostPolicy = autocert.HostWhitelist(domains...)
}
su.autoTLS = true
autoTLSManager := &autocert.Manager{
Prompt: autocert.AcceptTOS,
HostPolicy: hostPolicy,
Email: email,
Cache: cache,
}
return su.runTLS(autoTLSManager.GetCertificate, autoTLSManager.HTTPHandler)
}
func (su *Supervisor) runTLS(getCertificate func(*tls.ClientHelloInfo) (*tls.Certificate, error), challengeHandler func(fallback http.Handler) http.Handler) error {
if su.manuallyTLS && !su.disableHTTP1ToHTTP2Redirection {
// If manual TLS and auto-redirection is enabled,
// then create an empty challenge handler so the :80 server starts.
challengeHandler = func(h http.Handler) http.Handler { // it is always nil on manual TLS.
target, _ := url.Parse("https://" + netutil.ResolveVHost(su.Server.Addr)) // e.g. https://localhost:443
http1Handler := RedirectHandler(target, http.StatusMovedPermanently)
return http1Handler
}
}
if challengeHandler != nil {
http1Server := &http.Server{
Addr: ":http",
Handler: challengeHandler(nil), // nil for redirection.
ReadTimeout: su.Server.ReadTimeout,
ReadHeaderTimeout: su.Server.ReadHeaderTimeout,
WriteTimeout: su.Server.WriteTimeout,
IdleTimeout: su.Server.IdleTimeout,
MaxHeaderBytes: su.Server.MaxHeaderBytes,
}
if su.Fallback == nil {
if !su.manuallyTLS && su.disableHTTP1ToHTTP2Redirection {
// automatic redirection was disabled but Fallback was not registered.
return fmt.Errorf("autotls: use iris.AutoTLSNoRedirect instead")
}
go http1Server.ListenAndServe()
} else {
// if it's manual TLS still can have its own Fallback server here,
// the handler will be the redirect one, the difference is that it can run on any port.
srv := su.Fallback(challengeHandler)
if srv == nil {
if !su.manuallyTLS {
return fmt.Errorf("autotls: relies on an HTTP/1.1 server")
}
// for any case the end-developer decided to return nil here,
// we proceed with the automatic redirection.
srv = http1Server
go srv.ListenAndServe()
} else {
if srv.Addr == "" {
srv.Addr = ":http"
}
// } else if !su.manuallyTLS && srv.Addr != ":80" && srv.Addr != ":http" {
// hostname, _, _ := net.SplitHostPort(su.Server.Addr)
// return fmt.Errorf("autotls: The HTTP-01 challenge relies on http://%s:80/.well-known/acme-challenge/", hostname)
// }
if srv.Handler == nil {
// handler was nil, caller wanted to change the server's options like read/write timeout.
srv.Handler = http1Server.Handler
go srv.ListenAndServe() // automatically start it, we assume the above ^
}
http1Server = srv // to register the shutdown event.
}
}
su.RegisterOnShutdown(func() {
timeout := 10 * time.Second
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
http1Server.Shutdown(ctx)
})
}
if su.Server.TLSConfig == nil {
// If tls.Config is NOT configured manually through a host configurator,
// then create it.
su.Server.TLSConfig = &tls.Config{
MinVersion: tls.VersionTLS12,
GetCertificate: getCertificate,
PreferServerCipherSuites: true,
NextProtos: []string{"h2", "http/1.1"},
CurvePreferences: []tls.CurveID{
tls.CurveP521,
tls.CurveP384,
tls.CurveP256,
},
CipherSuites: []uint16{
tls.TLS_AES_128_GCM_SHA256,
tls.TLS_CHACHA20_POLY1305_SHA256,
tls.TLS_AES_256_GCM_SHA384,
tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
// tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, G402: TLS Bad Cipher Suite
0xC028, /* TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 */
},
}
}
ln, err := netutil.TCP(su.Server.Addr, su.SocketSharding)
if err != nil {
return err
}
return su.supervise(func() error { return su.Server.ServeTLS(ln, "", "") })
}
// RegisterOnShutdown registers a function to call on Shutdown.
// This can be used to gracefully shutdown connections that have
// undergone NPN/ALPN protocol upgrade or that have been hijacked.
// This function should start protocol-specific graceful shutdown,
// but should not wait for shutdown to complete.
//
// Callbacks will run as separate go routines.
func (su *Supervisor) RegisterOnShutdown(cb func()) {
su.Server.RegisterOnShutdown(cb)
}
// Shutdown gracefully shuts down the server without interrupting any
// active connections. Shutdown works by first closing all open
// listeners, then closing all idle connections, and then waiting
// indefinitely for connections to return to idle and then shut down.
// If the provided context expires before the shutdown is complete,
// then the context's error is returned.
//
// Shutdown does not attempt to close nor wait for hijacked
// connections such as WebSockets. The caller of Shutdown should
// separately notify such long-lived connections of shutdown and wait
// for them to close, if desired.
func (su *Supervisor) Shutdown(ctx context.Context) error {
atomic.StoreUint32(&su.closedManually, 1) // future-use
if ctx == nil {
ctx = context.Background()
}
return su.Server.Shutdown(ctx)
}
func (su *Supervisor) shutdownOnInterrupt(ctx context.Context) {
atomic.StoreUint32(&su.closedByInterruptHandler, 1)
su.Shutdown(ctx)
}
// fileExists tries to report whether a local physical file of "filename" exists.
func fileExists(filename string) bool {
info, err := os.Stat(filename)
if err != nil {
return false
}
return !info.IsDir()
}